Риск использования «чистых данных» для машинного обучения

В последнее время анализ данных играет ключевую роль во многих сферах, в том числе в промышленном производстве и инженерном проектировании. В сочетании с предметными знаниями аналитика может быть незаменима при определении причин перебоев и потери прибыли. Однако результаты анализа сильно зависят от контекста данных, а выводы могут оказаться ложными.

Cognex VisionPro ViDi: технологии глубокого обучения для решения сложных задач

Два года назад компания Cognex начала предлагать клиентам библиотеку глубокого обучения ViDi, а в прошлом году реализовала ее в сочетании с VisionPro, своим флагманским программным продуктом. В пакет включены инструменты для выполнения четырех основных задач: Blue-Locate для локализации, Red-Analyze для обнаружения отклонений, Green-Classify для классификации и Blue-Read для распознавания символов.

Больше самообучающегося оборудования — меньше рисков

В скором времени безопасность автоматизации будет обеспечиваться в том числе самообучающимися машинами и оборудованием. Благодаря достижениям в области искусственного интеллекта (англ. Artificial intelligence, AI) и машинного обучения (англ. machine learning, ML) роботы и другое промышленное оборудование, при функционировании которого необходимо соблюдение особых мер безопасности, смогут учиться на большом массиве соответствующих данных.

Использование машинного обучения в IoT-шлюзах: архитектура и сценарии

В статье демонстрируются варианты архитектуры для решения задачи по поиску аномалий в работе оборудования на основе анализа потоков его телеметрии методами машинного обучения (Machine Learning, ML). Поясняется, как можно получить и запустить ML-модели на примере задачи предсказания отказов в работе электродвигателей. Автору хотелось, чтобы статья получилась максимально практической, полезной специалистам по индустриальной автоматизации, поэтому математические формулы опущены и в конце публикации приведены ссылки на исходный код решения.